Name: \qquad
\qquad

WS 1.1 - Pythagorean Theorem

$$
\overline{16}+\frac{-}{4}=\frac{20}{20}
$$

Solve for each variable. Round each answer to the nearest hundredth. Show all work for credit.

3. $\begin{aligned} a & =\sqrt{c^{2}-b^{2}} \\ & =\sqrt{2^{2}-\ldots n^{2}} \\ & =\sqrt{ } \\ & =\sqrt{\square-} \end{aligned}$ 24	4.
	6.
4. a	8.

9. Solve for x, use one half of the triangle.	10. A Tv screen's size is described by the measure of its diagonal, typically in inches. What is the size of the TV screen shown below?
11. Find the length of $A B$ when the coordinates of A are $(4,7)$, and the coordinates of B are $(16,12)$. B	12. The diagonal crossbar of an old wooden gate has rusted. The gate is rectangular, 3 m by 4 m . How long is the crossbar (diagonal)? \square
13. Find the length of a diagonal of a square enclosure with a perimeter of 16 m .	14. A Port (P) is 62 km South of a lighthouse (L). A Marker buoy (B) is east of the Lighthouse. Knowing that PB is 75 km apart. Calculate distance LB. L
15. ABC is an isosceles triangle, $\mathrm{AB}=\mathrm{AC}=12 \mathrm{~cm} . \mathrm{BC}=10$ cm . Calculate the perpendicular distance from A to $B C$.	16. An 8 m long ladder leans against a wall. Its base on the ground is 6 m away from the wall. Its top reaches a window. How high is the window above ground?

